3.89 \(\int (d+e x^2)^2 (a+b \csc ^{-1}(c x)) \, dx\)

Optimal. Leaf size=191 \[ d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )+\frac {b e^2 x^4 \sqrt {c^2 x^2-1}}{20 c \sqrt {c^2 x^2}}+\frac {b x \left (120 c^4 d^2+40 c^2 d e+9 e^2\right ) \tanh ^{-1}\left (\frac {c x}{\sqrt {c^2 x^2-1}}\right )}{120 c^4 \sqrt {c^2 x^2}}+\frac {b e x^2 \sqrt {c^2 x^2-1} \left (40 c^2 d+9 e\right )}{120 c^3 \sqrt {c^2 x^2}} \]

[Out]

d^2*x*(a+b*arccsc(c*x))+2/3*d*e*x^3*(a+b*arccsc(c*x))+1/5*e^2*x^5*(a+b*arccsc(c*x))+1/120*b*(120*c^4*d^2+40*c^
2*d*e+9*e^2)*x*arctanh(c*x/(c^2*x^2-1)^(1/2))/c^4/(c^2*x^2)^(1/2)+1/120*b*e*(40*c^2*d+9*e)*x^2*(c^2*x^2-1)^(1/
2)/c^3/(c^2*x^2)^(1/2)+1/20*b*e^2*x^4*(c^2*x^2-1)^(1/2)/c/(c^2*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 7, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.389, Rules used = {194, 5229, 12, 1159, 388, 217, 206} \[ d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )+\frac {b x \left (120 c^4 d^2+40 c^2 d e+9 e^2\right ) \tanh ^{-1}\left (\frac {c x}{\sqrt {c^2 x^2-1}}\right )}{120 c^4 \sqrt {c^2 x^2}}+\frac {b e x^2 \sqrt {c^2 x^2-1} \left (40 c^2 d+9 e\right )}{120 c^3 \sqrt {c^2 x^2}}+\frac {b e^2 x^4 \sqrt {c^2 x^2-1}}{20 c \sqrt {c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^2*(a + b*ArcCsc[c*x]),x]

[Out]

(b*e*(40*c^2*d + 9*e)*x^2*Sqrt[-1 + c^2*x^2])/(120*c^3*Sqrt[c^2*x^2]) + (b*e^2*x^4*Sqrt[-1 + c^2*x^2])/(20*c*S
qrt[c^2*x^2]) + d^2*x*(a + b*ArcCsc[c*x]) + (2*d*e*x^3*(a + b*ArcCsc[c*x]))/3 + (e^2*x^5*(a + b*ArcCsc[c*x]))/
5 + (b*(120*c^4*d^2 + 40*c^2*d*e + 9*e^2)*x*ArcTanh[(c*x)/Sqrt[-1 + c^2*x^2]])/(120*c^4*Sqrt[c^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 194

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 1159

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(c^p*x^(4*p - 1)*
(d + e*x^2)^(q + 1))/(e*(4*p + 2*q + 1)), x] + Dist[1/(e*(4*p + 2*q + 1)), Int[(d + e*x^2)^q*ExpandToSum[e*(4*
p + 2*q + 1)*(a + b*x^2 + c*x^4)^p - d*c^p*(4*p - 1)*x^(4*p - 2) - e*c^p*(4*p + 2*q + 1)*x^(4*p), x], x], x] /
; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] &&  !LtQ[
q, -1]

Rule 5229

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Dist[a + b*ArcCsc[c*x], u, x] + Dist[(b*c*x)/Sqrt[c^2*x^2], Int[SimplifyIntegrand[u/(x*Sqrt[c^2*x^2
- 1]), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])

Rubi steps

\begin {align*} \int \left (d+e x^2\right )^2 \left (a+b \csc ^{-1}(c x)\right ) \, dx &=d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )+\frac {(b c x) \int \frac {15 d^2+10 d e x^2+3 e^2 x^4}{15 \sqrt {-1+c^2 x^2}} \, dx}{\sqrt {c^2 x^2}}\\ &=d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )+\frac {(b c x) \int \frac {15 d^2+10 d e x^2+3 e^2 x^4}{\sqrt {-1+c^2 x^2}} \, dx}{15 \sqrt {c^2 x^2}}\\ &=\frac {b e^2 x^4 \sqrt {-1+c^2 x^2}}{20 c \sqrt {c^2 x^2}}+d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )+\frac {(b x) \int \frac {60 c^2 d^2+e \left (40 c^2 d+9 e\right ) x^2}{\sqrt {-1+c^2 x^2}} \, dx}{60 c \sqrt {c^2 x^2}}\\ &=\frac {b e \left (40 c^2 d+9 e\right ) x^2 \sqrt {-1+c^2 x^2}}{120 c^3 \sqrt {c^2 x^2}}+\frac {b e^2 x^4 \sqrt {-1+c^2 x^2}}{20 c \sqrt {c^2 x^2}}+d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )-\frac {\left (b \left (-120 c^4 d^2-e \left (40 c^2 d+9 e\right )\right ) x\right ) \int \frac {1}{\sqrt {-1+c^2 x^2}} \, dx}{120 c^3 \sqrt {c^2 x^2}}\\ &=\frac {b e \left (40 c^2 d+9 e\right ) x^2 \sqrt {-1+c^2 x^2}}{120 c^3 \sqrt {c^2 x^2}}+\frac {b e^2 x^4 \sqrt {-1+c^2 x^2}}{20 c \sqrt {c^2 x^2}}+d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )-\frac {\left (b \left (-120 c^4 d^2-e \left (40 c^2 d+9 e\right )\right ) x\right ) \operatorname {Subst}\left (\int \frac {1}{1-c^2 x^2} \, dx,x,\frac {x}{\sqrt {-1+c^2 x^2}}\right )}{120 c^3 \sqrt {c^2 x^2}}\\ &=\frac {b e \left (40 c^2 d+9 e\right ) x^2 \sqrt {-1+c^2 x^2}}{120 c^3 \sqrt {c^2 x^2}}+\frac {b e^2 x^4 \sqrt {-1+c^2 x^2}}{20 c \sqrt {c^2 x^2}}+d^2 x \left (a+b \csc ^{-1}(c x)\right )+\frac {2}{3} d e x^3 \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{5} e^2 x^5 \left (a+b \csc ^{-1}(c x)\right )+\frac {b \left (120 c^4 d^2+40 c^2 d e+9 e^2\right ) x \tanh ^{-1}\left (\frac {c x}{\sqrt {-1+c^2 x^2}}\right )}{120 c^4 \sqrt {c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 151, normalized size = 0.79 \[ \frac {c^2 x \left (8 a c^3 \left (15 d^2+10 d e x^2+3 e^2 x^4\right )+b e x \sqrt {1-\frac {1}{c^2 x^2}} \left (c^2 \left (40 d+6 e x^2\right )+9 e\right )\right )+8 b c^5 x \csc ^{-1}(c x) \left (15 d^2+10 d e x^2+3 e^2 x^4\right )+b \left (120 c^4 d^2+40 c^2 d e+9 e^2\right ) \log \left (x \left (\sqrt {1-\frac {1}{c^2 x^2}}+1\right )\right )}{120 c^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^2*(a + b*ArcCsc[c*x]),x]

[Out]

(c^2*x*(8*a*c^3*(15*d^2 + 10*d*e*x^2 + 3*e^2*x^4) + b*e*Sqrt[1 - 1/(c^2*x^2)]*x*(9*e + c^2*(40*d + 6*e*x^2)))
+ 8*b*c^5*x*(15*d^2 + 10*d*e*x^2 + 3*e^2*x^4)*ArcCsc[c*x] + b*(120*c^4*d^2 + 40*c^2*d*e + 9*e^2)*Log[(1 + Sqrt
[1 - 1/(c^2*x^2)])*x])/(120*c^5)

________________________________________________________________________________________

fricas [A]  time = 2.60, size = 237, normalized size = 1.24 \[ \frac {24 \, a c^{5} e^{2} x^{5} + 80 \, a c^{5} d e x^{3} + 120 \, a c^{5} d^{2} x + 8 \, {\left (3 \, b c^{5} e^{2} x^{5} + 10 \, b c^{5} d e x^{3} + 15 \, b c^{5} d^{2} x - 15 \, b c^{5} d^{2} - 10 \, b c^{5} d e - 3 \, b c^{5} e^{2}\right )} \operatorname {arccsc}\left (c x\right ) - 16 \, {\left (15 \, b c^{5} d^{2} + 10 \, b c^{5} d e + 3 \, b c^{5} e^{2}\right )} \arctan \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (120 \, b c^{4} d^{2} + 40 \, b c^{2} d e + 9 \, b e^{2}\right )} \log \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) + {\left (6 \, b c^{3} e^{2} x^{3} + {\left (40 \, b c^{3} d e + 9 \, b c e^{2}\right )} x\right )} \sqrt {c^{2} x^{2} - 1}}{120 \, c^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsc(c*x)),x, algorithm="fricas")

[Out]

1/120*(24*a*c^5*e^2*x^5 + 80*a*c^5*d*e*x^3 + 120*a*c^5*d^2*x + 8*(3*b*c^5*e^2*x^5 + 10*b*c^5*d*e*x^3 + 15*b*c^
5*d^2*x - 15*b*c^5*d^2 - 10*b*c^5*d*e - 3*b*c^5*e^2)*arccsc(c*x) - 16*(15*b*c^5*d^2 + 10*b*c^5*d*e + 3*b*c^5*e
^2)*arctan(-c*x + sqrt(c^2*x^2 - 1)) - (120*b*c^4*d^2 + 40*b*c^2*d*e + 9*b*e^2)*log(-c*x + sqrt(c^2*x^2 - 1))
+ (6*b*c^3*e^2*x^3 + (40*b*c^3*d*e + 9*b*c*e^2)*x)*sqrt(c^2*x^2 - 1))/c^5

________________________________________________________________________________________

giac [B]  time = 3.20, size = 1027, normalized size = 5.38 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsc(c*x)),x, algorithm="giac")

[Out]

1/960*(6*b*x^5*(sqrt(-1/(c^2*x^2) + 1) + 1)^5*arcsin(1/(c*x))*e^2/c + 6*a*x^5*(sqrt(-1/(c^2*x^2) + 1) + 1)^5*e
^2/c + 80*b*d*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3*arcsin(1/(c*x))*e/c + 3*b*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4*
e^2/c^2 + 80*a*d*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3*e/c + 30*b*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3*arcsin(1/(c*
x))*e^2/c^3 + 480*b*d^2*x*(sqrt(-1/(c^2*x^2) + 1) + 1)*arcsin(1/(c*x))/c + 30*a*x^3*(sqrt(-1/(c^2*x^2) + 1) +
1)^3*e^2/c^3 + 80*b*d*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2*e/c^2 + 480*a*d^2*x*(sqrt(-1/(c^2*x^2) + 1) + 1)/c +
240*b*d*x*(sqrt(-1/(c^2*x^2) + 1) + 1)*arcsin(1/(c*x))*e/c^3 + 24*b*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2*e^2/c^4
 + 240*a*d*x*(sqrt(-1/(c^2*x^2) + 1) + 1)*e/c^3 + 960*b*d^2*log(sqrt(-1/(c^2*x^2) + 1) + 1)/c^2 - 960*b*d^2*lo
g(1/(abs(c)*abs(x)))/c^2 + 60*b*x*(sqrt(-1/(c^2*x^2) + 1) + 1)*arcsin(1/(c*x))*e^2/c^5 + 320*b*d*e*log(sqrt(-1
/(c^2*x^2) + 1) + 1)/c^4 - 320*b*d*e*log(1/(abs(c)*abs(x)))/c^4 + 480*b*d^2*arcsin(1/(c*x))/(c^3*x*(sqrt(-1/(c
^2*x^2) + 1) + 1)) + 60*a*x*(sqrt(-1/(c^2*x^2) + 1) + 1)*e^2/c^5 + 480*a*d^2/(c^3*x*(sqrt(-1/(c^2*x^2) + 1) +
1)) + 240*b*d*arcsin(1/(c*x))*e/(c^5*x*(sqrt(-1/(c^2*x^2) + 1) + 1)) + 72*b*e^2*log(sqrt(-1/(c^2*x^2) + 1) + 1
)/c^6 - 72*b*e^2*log(1/(abs(c)*abs(x)))/c^6 + 240*a*d*e/(c^5*x*(sqrt(-1/(c^2*x^2) + 1) + 1)) + 60*b*arcsin(1/(
c*x))*e^2/(c^7*x*(sqrt(-1/(c^2*x^2) + 1) + 1)) + 60*a*e^2/(c^7*x*(sqrt(-1/(c^2*x^2) + 1) + 1)) - 80*b*d*e/(c^6
*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2) + 80*b*d*arcsin(1/(c*x))*e/(c^7*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3) - 24*
b*e^2/(c^8*x^2*(sqrt(-1/(c^2*x^2) + 1) + 1)^2) + 80*a*d*e/(c^7*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3) + 30*b*arcs
in(1/(c*x))*e^2/(c^9*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3) + 30*a*e^2/(c^9*x^3*(sqrt(-1/(c^2*x^2) + 1) + 1)^3) -
 3*b*e^2/(c^10*x^4*(sqrt(-1/(c^2*x^2) + 1) + 1)^4) + 6*b*arcsin(1/(c*x))*e^2/(c^11*x^5*(sqrt(-1/(c^2*x^2) + 1)
 + 1)^5) + 6*a*e^2/(c^11*x^5*(sqrt(-1/(c^2*x^2) + 1) + 1)^5))*c

________________________________________________________________________________________

maple [B]  time = 0.06, size = 371, normalized size = 1.94 \[ \frac {a \,e^{2} x^{5}}{5}+\frac {2 a \,x^{3} d e}{3}+a x \,d^{2}+\frac {b \,\mathrm {arccsc}\left (c x \right ) e^{2} x^{5}}{5}+\frac {2 b \,\mathrm {arccsc}\left (c x \right ) x^{3} d e}{3}+b \,\mathrm {arccsc}\left (c x \right ) x \,d^{2}+\frac {b \sqrt {c^{2} x^{2}-1}\, d^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{c^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}+\frac {b \,x^{4} e^{2}}{20 c \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {b \,x^{2} e^{2}}{40 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {b e d \,x^{2}}{3 c \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac {b e d}{3 c^{3} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {b \sqrt {c^{2} x^{2}-1}\, e d \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{3 c^{4} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}-\frac {3 b \,e^{2}}{40 c^{5} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {3 b \sqrt {c^{2} x^{2}-1}\, e^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{40 c^{6} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2*(a+b*arccsc(c*x)),x)

[Out]

1/5*a*e^2*x^5+2/3*a*x^3*d*e+a*x*d^2+1/5*b*arccsc(c*x)*e^2*x^5+2/3*b*arccsc(c*x)*x^3*d*e+b*arccsc(c*x)*x*d^2+1/
c^2*b*(c^2*x^2-1)^(1/2)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x*d^2*ln(c*x+(c^2*x^2-1)^(1/2))+1/20/c*b/((c^2*x^2-1)/c^2/
x^2)^(1/2)*x^4*e^2+1/40/c^3*b/((c^2*x^2-1)/c^2/x^2)^(1/2)*x^2*e^2+1/3/c*b/((c^2*x^2-1)/c^2/x^2)^(1/2)*e*d*x^2-
1/3/c^3*b/((c^2*x^2-1)/c^2/x^2)^(1/2)*e*d+1/3/c^4*b*(c^2*x^2-1)^(1/2)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x*e*d*ln(c*x
+(c^2*x^2-1)^(1/2))-3/40/c^5*b/((c^2*x^2-1)/c^2/x^2)^(1/2)*e^2+3/40/c^6*b*(c^2*x^2-1)^(1/2)/((c^2*x^2-1)/c^2/x
^2)^(1/2)/x*e^2*ln(c*x+(c^2*x^2-1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 296, normalized size = 1.55 \[ \frac {1}{5} \, a e^{2} x^{5} + \frac {2}{3} \, a d e x^{3} + \frac {1}{6} \, {\left (4 \, x^{3} \operatorname {arccsc}\left (c x\right ) + \frac {\frac {2 \, \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c^{2} {\left (\frac {1}{c^{2} x^{2}} - 1\right )} + c^{2}} + \frac {\log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}{c^{2}} - \frac {\log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} - 1\right )}{c^{2}}}{c}\right )} b d e + \frac {1}{80} \, {\left (16 \, x^{5} \operatorname {arccsc}\left (c x\right ) - \frac {\frac {2 \, {\left (3 \, {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} - 5 \, \sqrt {-\frac {1}{c^{2} x^{2}} + 1}\right )}}{c^{4} {\left (\frac {1}{c^{2} x^{2}} - 1\right )}^{2} + 2 \, c^{4} {\left (\frac {1}{c^{2} x^{2}} - 1\right )} + c^{4}} - \frac {3 \, \log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )}{c^{4}} + \frac {3 \, \log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} - 1\right )}{c^{4}}}{c}\right )} b e^{2} + a d^{2} x + \frac {{\left (2 \, c x \operatorname {arccsc}\left (c x\right ) + \log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right ) - \log \left (-\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )\right )} b d^{2}}{2 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsc(c*x)),x, algorithm="maxima")

[Out]

1/5*a*e^2*x^5 + 2/3*a*d*e*x^3 + 1/6*(4*x^3*arccsc(c*x) + (2*sqrt(-1/(c^2*x^2) + 1)/(c^2*(1/(c^2*x^2) - 1) + c^
2) + log(sqrt(-1/(c^2*x^2) + 1) + 1)/c^2 - log(sqrt(-1/(c^2*x^2) + 1) - 1)/c^2)/c)*b*d*e + 1/80*(16*x^5*arccsc
(c*x) - (2*(3*(-1/(c^2*x^2) + 1)^(3/2) - 5*sqrt(-1/(c^2*x^2) + 1))/(c^4*(1/(c^2*x^2) - 1)^2 + 2*c^4*(1/(c^2*x^
2) - 1) + c^4) - 3*log(sqrt(-1/(c^2*x^2) + 1) + 1)/c^4 + 3*log(sqrt(-1/(c^2*x^2) + 1) - 1)/c^4)/c)*b*e^2 + a*d
^2*x + 1/2*(2*c*x*arccsc(c*x) + log(sqrt(-1/(c^2*x^2) + 1) + 1) - log(-sqrt(-1/(c^2*x^2) + 1) + 1))*b*d^2/c

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (e\,x^2+d\right )}^2\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^2*(a + b*asin(1/(c*x))),x)

[Out]

int((d + e*x^2)^2*(a + b*asin(1/(c*x))), x)

________________________________________________________________________________________

sympy [A]  time = 10.12, size = 355, normalized size = 1.86 \[ a d^{2} x + \frac {2 a d e x^{3}}{3} + \frac {a e^{2} x^{5}}{5} + b d^{2} x \operatorname {acsc}{\left (c x \right )} + \frac {2 b d e x^{3} \operatorname {acsc}{\left (c x \right )}}{3} + \frac {b e^{2} x^{5} \operatorname {acsc}{\left (c x \right )}}{5} + \frac {b d^{2} \left (\begin {cases} \operatorname {acosh}{\left (c x \right )} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\- i \operatorname {asin}{\left (c x \right )} & \text {otherwise} \end {cases}\right )}{c} + \frac {2 b d e \left (\begin {cases} \frac {x \sqrt {c^{2} x^{2} - 1}}{2 c} + \frac {\operatorname {acosh}{\left (c x \right )}}{2 c^{2}} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\- \frac {i c x^{3}}{2 \sqrt {- c^{2} x^{2} + 1}} + \frac {i x}{2 c \sqrt {- c^{2} x^{2} + 1}} - \frac {i \operatorname {asin}{\left (c x \right )}}{2 c^{2}} & \text {otherwise} \end {cases}\right )}{3 c} + \frac {b e^{2} \left (\begin {cases} \frac {c x^{5}}{4 \sqrt {c^{2} x^{2} - 1}} + \frac {x^{3}}{8 c \sqrt {c^{2} x^{2} - 1}} - \frac {3 x}{8 c^{3} \sqrt {c^{2} x^{2} - 1}} + \frac {3 \operatorname {acosh}{\left (c x \right )}}{8 c^{4}} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\- \frac {i c x^{5}}{4 \sqrt {- c^{2} x^{2} + 1}} - \frac {i x^{3}}{8 c \sqrt {- c^{2} x^{2} + 1}} + \frac {3 i x}{8 c^{3} \sqrt {- c^{2} x^{2} + 1}} - \frac {3 i \operatorname {asin}{\left (c x \right )}}{8 c^{4}} & \text {otherwise} \end {cases}\right )}{5 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2*(a+b*acsc(c*x)),x)

[Out]

a*d**2*x + 2*a*d*e*x**3/3 + a*e**2*x**5/5 + b*d**2*x*acsc(c*x) + 2*b*d*e*x**3*acsc(c*x)/3 + b*e**2*x**5*acsc(c
*x)/5 + b*d**2*Piecewise((acosh(c*x), Abs(c**2*x**2) > 1), (-I*asin(c*x), True))/c + 2*b*d*e*Piecewise((x*sqrt
(c**2*x**2 - 1)/(2*c) + acosh(c*x)/(2*c**2), Abs(c**2*x**2) > 1), (-I*c*x**3/(2*sqrt(-c**2*x**2 + 1)) + I*x/(2
*c*sqrt(-c**2*x**2 + 1)) - I*asin(c*x)/(2*c**2), True))/(3*c) + b*e**2*Piecewise((c*x**5/(4*sqrt(c**2*x**2 - 1
)) + x**3/(8*c*sqrt(c**2*x**2 - 1)) - 3*x/(8*c**3*sqrt(c**2*x**2 - 1)) + 3*acosh(c*x)/(8*c**4), Abs(c**2*x**2)
 > 1), (-I*c*x**5/(4*sqrt(-c**2*x**2 + 1)) - I*x**3/(8*c*sqrt(-c**2*x**2 + 1)) + 3*I*x/(8*c**3*sqrt(-c**2*x**2
 + 1)) - 3*I*asin(c*x)/(8*c**4), True))/(5*c)

________________________________________________________________________________________